Home
Class 12
MATHS
The direction cosines of any normal to t...

The direction cosines of any normal to the xy-plane are (A) 1,0,0 (B) 0,1,0 (C) 1,1,0 (D) 0,01

Promotional Banner

Similar Questions

Explore conceptually related problems

The direction cosines of x-axis are (A) 0,0,1 (B) 1,0,0 (C) 0,1,0 (D) 0,1,1

The direction ratios of a normal to the plane passing throuhg (0,0,1) ,(0,1,2) and (1,2,3) are proportional to

The direction cosines of line joining (1,-1,1) and (-1,1,1) are (A) 2,-2,0 (B) 1,-1,0 (C) 1/sqrt(2)-1/sqrt(2),0 (D) none of these

Write the direction-cosines of the line joining the points (1,0,0) and (0,1,1).

If the direction cosines of a line are 1/c,1/c,1/c rthen (A) c.0 (B) 0ltclt1 (C) c=+-sqrt(3) (D) cgt2

The abscissa and ordinate of the origin are (a) (0, 0) (b) (1, 0) (c) (0, 1) (d) (1, 1)

The matrix of the transformation reflection in the line x+y=0 is (A) [(-1,0),(0,-1)] (B) [(1,0),(0,-1)] (C) [(0,1),(1,0)] (D) [(0,-1),(-1,0)]

Angle between the line (x+1)/1=y/2=(z-1)/1 and a normal to plane x-y+z=0 is (A) 0^0 (B) 30^0 (C) 45^0 (D) 90^0

If ax+by+c=0 is a normal to hyperbola xy=1 , then (A) alt0, blt0 (B) alt0, bgt0 (C) agt0, bgt0 (D) agt0, blt0

If I=int_0^1 (xdx)/(8+x^3) then the smallest interval in which I lies is (A) (0,1/8) (B) (0,1/9) (C) (0,1/10) (D) (0,1/7)