Home
Class 12
MATHS
The line vecr=alpha(hati+hatj+hatk)+3hat...

The line `vecr=alpha(hati+hatj+hatk)+3hatk and vecr=beta(hati-2hatj+hatk)+3hatk` (A) intersect at rilghat angles (B) are skew (C) are parallel (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The lines vecr=(hati+hatj)+lamda(hati+hatk)andvecr=(hati+hatj)+mu(-hati+hatj-hatk) are

If vecF=hati+2hatj-3hatk and vecr=2hati-hatj+hatk find vecrxxvecF

The angles between the planes vecr.(3hati-6hatj+2hatk)=4 and vecr.(2hati-hatj+2hatk)=3 , is

The angle between the planes vecr.(2hati-hatj+hatk)=6 and vecr.(hati+hatj+2hatk)=5 is

Show that the lines vecr= hati+hatj-hatk+lambda(3hati-hatj) and vecr = 4 hati+hatk+mu(2hati+3hatk) intersect. Also find the co[-ordinates of their point of intersection.

The lines vecr=(2hati-3hatj+7hatk)+lamda(2hati+phatj+5hatk) and vecr=(hati+2hatj+3hatk)+mu(3hati-phatj+phatk) are perpendicular it p=

Statement 1 : Lines vecr= hati-hatj+ lamda (hati+hatj-hatk) and vecr= 2hati-hatj+ mu (hati+hatj-hatk) do not intersect. Statement 2 : Skew lines never intersect.

The acute angle between the lines vecr=(4hati-hatj)+5(2hati+hatj-3hatk) and vecr=(hati-hatj+2hatk)+t(hati-3hatj+2hatk) is (A) (3pi)/2 (B) pi/3 (C) (2pi)/3 (D) pi/6

If the planes vecr.(hati+hatj+hatk)=1, vecr.(hati+2ahatj+hatk)=2 and vecr. (ahati+a^(2)hatj+hatk)=3 intersect in a line, then the possible number of real values of a is