Home
Class 12
MATHS
Find the equation of the plane passing t...

Find the equation of the plane passing through the line of intersection of the planes 2x + y - Z = 3,5x - 3y + 4z + 9 = 0 and parallel to the line `(x-1)/2=(y-3)/4=(z-5)/5`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the equation of the plane passing through the line of intersection of the planes : 2x + y - z = 3 and 5x - 3y + 4z = 9 and parallel to the line (x -1)/(2) = (y - 3)/(4) = (z -5)/(5) .

The equation of plane passing through the line of intersection of planes 2x-y+z=3,4x-3y-5z+9=0 and parallel to the line (x+1)/(2)=(y+3)/(4)=(z-3)/(5) is

Find the equation of the plane passing through the line of intersection of the planes 2x-y=0 and 3z-y=0 , and perpendicular to the plane 4x+5y-3z=9 .

The equation of the plane passing through the line of intersection of the planes x+y+z=6 and 2x+3y+4z+5=0 and perpendicular to the plane 4x+5y-3z=8 is

Find the equation of the plane passing through the line intersection of the plane: 2x-y=0 and 3z-y=0 and perpendicular to the plane 4x+5y-3z=8

Find the equation of the plane passing through the line of intersection of the planes 4x-5y-4z=1 and 2x=y+2z=8 and the point (2,1,3).

The equation of the plane passing through the line of intersection of the planes x + y + 2z = 1,2x + 3y + 4z = 7, and perpendicular to the plane x - 5y + 3z = 5 is given by:

The equation of the plane passing through the line of intersection of the planes x+y+z=1,2x+3y+4z=7 , and perpendicular to the plane x-5y+3z=5 is given by