Home
Class 12
MATHS
Find the vector and the Cartesian form o...

Find the vector and the Cartesian form of the equation of the plane containing two lines: `vecr=hati+2hatj-hatk+lamda(2hati+3hatj+6hatk) and vecr= 3hati+3hatj-5hatk+mu(-2hati+3hatj+8hatk)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the vector and Cartesian forms of the equationi of the plane containing the two lines. vecr=(hati+2hatj-4hatk)+lambda(2hati+3hatj+6hatk) and vecr=(9hati+5hatj-hatk)+mu(-2hati+3hatj+8hatk) .

Find the vector and Cartesian equations of a plane containing the two lines vecr=(2hati+hatj-3hatk)+lambda(hati+2hatj+5hatk) and vecr=(3hati+3hatj+2hatk)+mu(3hati-2hatj+5hatk) .

The equation of the plane containing the lines vecr=(hati+hatj-hatk)+lamda(3hati-hatj) and vecr=(4hati-hatk)+mu(2hati+3hatk) , is

Find the vector and cartesian equations of the plane containing the lines : vec(r) = hati + 2 hatj - 4 hatk + lambda (2 hati + 3 hatj + 6 hatk) and vec(r) = 3 hati + 3 hatj - 5 hatk + mu (-2 hatj + 3 hatj + 8 hatk) .

Find the shortest distance between the following pair of line: vecr=hati+2hatj-4hatk+lamda(2hati+3hatj+6hatk) and vecr=3hati+3hatj-5hatk+mu(2hati+3hatj+6hatk) .

The vector equation of the plane containing he line vecr=(-2hati-3hatj+4hatk)+lamda(3hati-2hatj-hatk) and the point hati+2hatj+3hatk is

Find the angle between the lines vecr=3hati-2hatj+6hatk+lamda(2hati+hatj+2hatk) and vecr=(2hatj-5hatk)+mu(6hati+3hatj+2hatk) .

Find the shortest distance between the lines vecr=3hati+5hatj+7hatk+lamda(hati-2hatj+hatk) and vecr=-hati+hatj-hatk+mu(2hati-6hatj+hatk)