Home
Class 12
MATHS
The acute angle between the planes 5x-4y...

The acute angle between the planes `5x-4y+7z=13` and the y-axis is given by (A) `sin^-1(5/sqrt(90))` (B) `sin^-1((-4)/sqrt(90))` (C) `sin^-1(7/sqrt(90))` (D) `sin^-1(4/sqrt(90))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The acute angle between the plane 5x-4y+7z=13 and the y-axis is givne by (A) sin^-1(5/sqrt(90)) (B) sin^-1((-4)/sqrt(90)) (C) sin^-1(7/sqrt(90)) (D) sin^-1(4/sqrt(90))

sin^(-1)((1)/(sqrt(5)))+sin^(-1)((1)/(sqrt(10)))=(pi)/(4)

cot((sin^(-1)1)/(sqrt(5))+(sin^(-4)2)/(sqrt(5)))

The value of sin(1/4sin^(-1)(sqrt(63))/8) is 1/(sqrt(2)) (b) 1/(sqrt(3)) (c) 1/(2sqrt(2)) (d) 1/(3sqrt(3))

Prove that the angle between the line (x-2)/(-1)=(y+1)/(1)=(z-1)/(1) and plane 3x+2y-z=4 is sin^(-1)((-2)/(sqrt(42)))

sin^(-1){cot(sin^(-1)(sqrt((2-sqrt(3))/(4))+cos^(-1)((sqrt(12))/(4))+sec^(-1)sqrt(2))}

int sqrt((x)/(1-x))dx is equal to sin^(-1)sqrt(x)+C(b)sin^(-1){sqrt(x)-sqrt(x(1-x))}+C(c)sin^(-1){sqrt(x(1-x)}+C(d))sin^(-1)sqrt(x)-sqrt(x(1-x))+C

If sin x+7cos x=5 ,then cos(x-phi)=(1)/(sqrt(2)) where (A) cos phi=(7)/(sqrt(50)) (B) cos phi=(7)/(sqrt(75)) (C) sin phi=(1)/(sqrt(50)) (D) sin phi=sqrt((26)/(75))

If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3 , then