Home
Class 12
MATHS
The points A(1,1,0),B(0,1,1),C(1,0,1) an...

The points `A(1,1,0),B(0,1,1),C(1,0,1) and D(2/3, 2/3, 2/3)` are (A) coplanar (B) non coplanar (C) vertices of a paralleloram (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The points A(1,1,0),B(0,1,1),C(1,0,1) and D(2/3,2/3,2/3) are (A) coplanar (B) nonn coplanar (C) vertices of a parallelograsm (D) none of these

. Show that the points A(2,1,-1),B(0,-1,0),C(4,0,4) and D(2,0,1) are coplanar.

Show that the points A(2,1,-1),B(0,-1,0),C(4,0,4) and (2,0,1) are coplanar.

Show thast the points P(1,1,1),Q(0,-1,0),R(2,1,-1) and S(3,3,0) are coplanar.

If four point A(1,0,3),B(-1,3,4),C(1,2;1) and D(k,2,5) are coplanar,then k=

The distinct points A(0,0),B(0,1),C(1,0), and D(2a,3a) are concyclic than

If the points A(2, -1, 1), B(4, 0, p), C(1, 1, 1), D(2, 4, 3) are coplanar, then p=

Show that the points A(2,1, -1), B(0, -1, 0), C(4, 0, 4) and D(2,0,1) are coplanar.

Show that the points A(-1,4,-3),B(3,2,-5),C(-3,8,-5) and D(-3,2,1) are coplanar.

The value of x when the points A(2,-1,1),B(4,0,3),C(x,1,1)andD(2,4,3) are coplanar is