Home
Class 12
MATHS
The angle theta the line vecr=vecr+lamda...

The angle `theta` the line `vecr=vecr+lamdavecb` and the plane `vecr.hatn=d` is given by (A) `sin^-1((vecb.hatn)/(|vecb|))` (B) `cos^-1((vecb.hatn)/(|vecb|))` (C) `sin^-1((veca.hatn)/(|veca|))` (D) `cos^-1((veca.hatn)/(|veca|))`

Promotional Banner

Similar Questions

Explore conceptually related problems

A straighat line vecr=veca+lamdavecb meets the plane vecr.vecn=p in the point whose position vector is (A) veca+((veca.hatn)/(vecb.hatn))vecb (B) veca+((p-veca.hatn)/(vecb.hatn))vecb (C) veca-((veca.hatn)/(vecb.hatn))vecb (D) none of these

The equation of the plane contaiing the lines vecr=veca_(1)+lamda vecb and vecr=veca_(2)+muvecb is

The shortest distance between the lines vecr-veca+kvecb and vecr=veca+lvecc is ( vecb and vecc are non collinear) (A) 0 (B) |vecb.vecc| (C) (|vecbxxvecc|)/(|veca|) (D) (|vecb.vecc|)/(|veca|)

The distance of the point A(veca) from the line vecr=vecb+tvecc is (A) |(veca-vecb)xxvecc| (B) (|(veca-vecb)xxvecc|)/(|(veca-vecb)|) (C) (|(veca-vecb)xxvecc|)/(|vecc|) (D) (|vecaxx(vecb-vecc)|)/(|veca|)

If veca_|_vecb and (veca+vecb)_|_(veca+mvecb) , then m= (A) -1 (B) 1 (C) (-1veca"^2)/(vecb|^2) (D) 0

If |veca - vecb|=|veca| =|vecb|=1 , then the angle between veca and vecb , is

If theta is the angle between unit vectors veca and vecb then sin(theta/2) is (A) 1/2|veca-vecb| (B) 1/2|veca+vecb| (C) 1/2|vecaxxvecb| (D) 1/sqrt(2)sqrt(1-veca.vecb)

Lines vecr = veca_(1) + lambda vecb_(1) and vecr = veca_(2) + svecb_(2) will lie in a Plane if

The plane contaning the two straight lines vecr=veca+lamda vecb and vecr=vecb+muveca is (A) [vecr vecas vecb]=0 (B) [vecr veca veca xxvecb]=0 (C) [vecr vecb vecaxxvecb]=0 (D) [vecr veca+vecb vecaxxvecb]=0