Home
Class 12
MATHS
The lines (x-2)/1=(y-3)/1=(z-4)/(-k) and...

The lines `(x-2)/1=(y-3)/1=(z-4)/(-k) and (x-1)/k=(y-4)/2=(z-5)/1` are coplanar if (A) `k=3 or -3` (B) `k=0 or -1` (C) `k=1 or -1` (D) `k=0 or -3`

Promotional Banner

Similar Questions

Explore conceptually related problems

The lines (x-2)/1=(y-3)/2=(z-4)/(-2k) and (x-1)/k=(y-2)/3=(z-6)/1 are coplanar if

The lines (x-2)/1=(y-3)/1=(z-4)/(-k) and (x-1)/k=(y-4)/2=(z-5)/1 are coplanar if (A) k=0 or -1 (B) k=1 or -1 (C) k=0 or -3 (D) k=3or-3

the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(1)=(z-5)/(1) are coplanar if k=?

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar if a.k=1 or -1 b.k=0 or -3ck=3 or -3d.k=0 or -1

If the lines (x-2)/(1)=(y-3)/(1)=(x-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar,then k can have

IF the strasighrt line (x-2)/1=(y-3)/1=(z-4)/0 and (x-1)/k=(y-4)/2=(z-5)/1 are coplanar then the value of k is (A) -3 (B) 0 (C) 1 (D) -2