Home
Class 12
MATHS
" (ii) "tan^(-1)x=sin^(-1)(1)/(sqrt(2))...

" (ii) "tan^(-1)x=sin^(-1)(1)/(sqrt(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

d/dx [tan^(-1)x + sin^(-1) (x/(sqrt(1+x^(2))))] =

tan^(-1)x=sin^(-1)backslash(x)/(sqrt(1+x^(2)))

tan ^(-1)x-tan ^(-1)y=sin ^(-1) ""(x-y)/(sqrt((1+x^(2))(1+y^(2)))

Given that 0<=x<=(1)/(2), and A=tan(sin^(-1)((x)/(sqrt(2))+sqrt((1-x^(2))/(2)))-sin^(-1)x) .If B=tan(4tan^(-1)((1)/(5))-tan^(-1)((1)/(239))) ,then find the value of A " and " B

The value of lim_(x rarr(1)/(sqrt(2)))(x-cos(sin^(-1)x))/(1-tan(sin^(-1)x)) is -(1)/(sqrt(2)) (b) (1)/(sqrt(2)) (c) sqrt(2)(d)-sqrt(2)

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-sin x))/(sqrt(1+x)-sqrt(1-sin x)))=(pi)/(4)-(1)/(2)cos^(-1),-(1)/(sqrt(2))<=x<=1

The expression (1)/(sqrt(2)){(sin tan^(-1)cos tan^(-1)t)/(cos tan^(-1)sin cot^(-1)sqrt(2)t)}*{sqrt((1+2t^(2))/(2+t^(2)))}

tan ^(-1)""(1-x)/(1+x)""=(1)/(2) sin ^(-1)""(x)/(sqrt(1+x^(2)))

int (tan (sin^(-1)x))/(sqrt(1-x^(2)))dx=

Prove that tan^(-1)((1-x)/(1+x))-tan^(-1)((1-y)/(1+y))=sin^(-1)((y-x)/(sqrt(1+x^(2))*sqrt(1+y^(2))))