Home
Class 12
MATHS
The vectors veca and vecb are not perpen...

The vectors `veca and vecb` are not perpendicular and `vecac and vecd` are two vectors satisfying : `vecbxxvecc=vecbxxvecd and veca.vecd=0.` Then the `vecd` is equal to (A) `vecc+(veca.vecc)/(veca.vecb))vecb` (B) `vecb+(vecb.vecc)/(veca.vecb))vecc` (C) `vecc-(veca.vecc)/(veca.vecb))vecb` (D) `vecb-(vecb.vecc)/(veca.vecb))vecc`

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca,vecb,vecc are unity vectors such that vecd=lamdaveca+muvecb+gammavecc then gamma is equal to (A) ([veca vecb vecc])/([vecb veca vecc]) (B) ([vecb vecc vecd])/([vecb vecc veca]) (C) ([vecb vecd vecc])/([veca vecb vecc]) (D) ([vecc vecb vecd])/([veca vecb vecc])

If vecc=vecaxxvecb and vecb=veccxxveca then (A) veca.vecb=vecc^2 (B) vecc.veca.=vecb^2 (C) veca_|_vecb (D) veca||vecbxxvecc

If veca, vecb, vecc and vecd ar distinct vectors such that veca xx vecc = vecb xx vecd and veca xx vecb = vecc xx vecd . Prove that (veca-vecd).(vecc-vecb)ne 0, i.e., veca.vecb + vecd.vecc nevecd.vecb + veca.vecc.

Show that [veca vecb vecc]\^2=|(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc)|

If vecA=(vecbxxvecc)/([vecb vecc vecc]), vecB=(veccxxveca)/([vecc veca vecb)], vecC=(vecaxxvecb)/([veca vecb vecc)] find [vecA vecB vecC]

veca,vecb,vecc are non zero vectors. If vecaxxvecb=vecaxxvecc and veca.vecb=veca.vecc then show that vecb=vecc .

If vector veca,vecb,vecc are coplanar show that |(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc)|

If veca,vecb,vecc,vecd are four distinct vectors satisfying the conditions vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxecd then prove that veca.vecb+vecc.vecd!=veca.vecc+vecb.vecd

If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb.vecc,veca.vecc)| where veca, vecb,vecc are coplanar then: