Home
Class 12
MATHS
If veca is perpendicular to vecb then th...

If `veca` is perpendicular to `vecb` then the vector `vecaxx[vecaxx{vecaxx(vecaxxvecb)}]` is equla (A) `|veca|^2vecb` (B) `|veca|vecb` (C) `|veca|^3vecb` (D) `|veca|^4vecb`

Promotional Banner

Similar Questions

Explore conceptually related problems

The vector (veca-vecb)xx(veca+vecb) is equal to (A) 1/2 (vecaxxvecb) (B) vecaxxvecb (C) 2(veca+vecb) (D) 2(vecaxxvecb)

If vecasxxvecb=0 and veca.vecb=0 then (A) veca_|_vecb (B) veca||vecb (C) veca=0 and vecb=0 (D) veca=0 or vecb=0

Find the value of (veca+vecb)xx[vecaxx((veca-vecb)xxvecb)]

If |veca|=2 and |vecb|=3 and veca.vecb=0, " then " (vecaxx(vecaxx(vecaxx(vecaxxvecb)))) is equal

If the vectors veca and vecb are mutually perpendicular, then vecaxx{vecaxx{vecaxx(vecaxxvecb)}} is equal to

For two vectors veca and vecb,veca,vecb=|veca||vecb| then (A) veca||vecb (B) veca_|_vecb (C) veca=vecb (D) none of these

If vecc=vecaxxvecb and vecb=veccxxveca then (A) veca.vecb=vecc^2 (B) vecc.veca.=vecb^2 (C) veca_|_vecb (D) veca||vecbxxvecc

If veca is perpendiculasr to both vecb and vecc then (A) veca.(vecbxxvecc)=vec0 (B) vecaxx(vecbxvecc)=vec0 (C) vecaxx(vecb+vecc)=vec0 (D) veca+(vecb+vecc)=vec0

If |veca|=2, |vecb|=5 and veca*vecb=0 , then veca xx (vecaxx(vecaxx(vecaxx(vecaxx(veca xx vecb))))) is equal to :

Prove that: vecaxx[vecbxx(veccxxveca)]=(veca.vecb)(vecaxxvecc)