Home
Class 12
MATHS
If veca,vecb,vecc are unit vectors satis...

If `veca,vecb,vecc` are unit vectors satisfying `|veca-vecb|^2+|vecb-vecc|^2+|vecc-veca|^2=9` then `|2veca+5vecb+3vecc|` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb and vecc are unit vectors satisfying |veca-vecb|^(2)+|vecb-vecc|^(2)+|vecc-veca|^(2)=9 " then " |2veca+ 5vecb+ 5vecc| is

If veca. Vecb and vecc are unit vectors satisfying |veca -vecb|^(2) +|vecb -vecc| ^(2) |vecc -veca| =9 , " then " |2 veca + 5 vecb + 5 vecc| is equal to

If |veca|=|vecb|=|vecc|=1 and |veca-vecb|^(2)+|vecb-vecc|^(2)+|vecc-veca|^(2)=9 then |2veca+5vecb+5vecc|=?

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,10vecc-23veca)]

Let veca , vecb and vecc be three unit vectors such that |veca - vecb|^2 + |veca - vecc|^2 =8 . Then |veca + 2vecb|^2 + |veca + 2vecc|^2 is equal to ________.

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca,vecb, vecc are three vectors such that veca + vecb +vecc =vec0, |veca| =1 |vecb| =2, | vecc| =3 , then veca.vecb + vecb .vecc +vecc + vecc.veca is equal to

If veca,vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,12vecc-23vecb)] is equal to

If veca,vecb are two unit vectors such that veca+(veca xx vecb)=vecc , where |vecc|=2 , then value of [vecavecbvecc] is