Home
Class 12
MATHS
If vecp and vecq are non collinear unit ...

If `vecp and vecq` are non collinear unit vectors `|vecp+vecq|=sqrt(3) then (2vecp-3vecq).(3vecp+vecq)` is equal to (A) `0` (B) `1/3` (C) `-1/3` (D) `-1/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any two vectors vecp and vecq , show that |vecp.vecq| le|vecp||vecq| .

Let veda,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are vectors defined by the relations vecp= (vecbxxvecc)/([veca vecb vecc]), vecq= (veccxxvecca)/([veca vecb vecc]), vecr= (vecaxxvecb)/([veca vecb vecc]) then the value of the expression (veca+vecb).vecp+(vecb+vecc).vecq+(vecc+veca).vecr . is equal to (A) 0 (B) 1 (C) 2 (D) 3

If vecpxxvecq=vecr and vecp.vecq=c , then vecq is

Unit vector along veca is denoted by hata(if |veca|=1,veca is called a unit vector). Also veca/|veca|=hata and veca=|veca|hata . Suppose veca,vecb,vecc are three non parallel unit vectors such that vecaxx(vecbxxvecc)=1/2vecb [vecpxx(vecxxvecr) is a vector triple product and vecpxx(vecqxxvecr)=(vecp.vecr.vecq)-(vecp.vecq)vecr] . |vecaxxvecc| is equal to (A) 1/2 (B) sqrt(3)/2 (C) 3/4 (D) none of these

For two vectors vecP and vecQ , show that (vecP+vecQ)xx(vecP-vecQ)=2(vecQxxvecP)

Let vecq and vecr be non - collinear vectors, If vecp is a vector such that vecp.(vecq+vecr)=4 and vecp xx(vecq xx vecr)=(x^(2)-2x+9)vecq" then " +(siny)vecr (x, y) lies on the line

Find the angle between two vectors vecp and vecq are 4,3 with respectively and when vecp.vecq =5 .

If vecP= vecQ then which of the following is NOT correct?