Home
Class 12
MATHS
The point P(x,y,z) lies in the first oct...

The point `P(x,y,z)` lies in the first octant and its distance from the origin is 12 units. If the positon vector of P makes `45^0` and`60^0` with the x-axis and y-axis respectively, then the coordinastes of P are (A) `(3sqrt(3),6,3sqrt(2))` (B) `(4sqrt(3),8,4sqrt(2))` (C) `(6sqrt(2),6,6)` (D) `(6,6,6sqrt(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

(3-sqrt(6))/(3+2sqrt(6))=a sqrt(6)-b

4^(5log_(4)(sqrt(2)(3-sqrt(6)))-6log_(8)(sqrt(3)-sqrt(2)))

The value 4^(5log_(4sqrt(2))(3-sqrt(6))-6log_(8)(sqrt(3)-sqrt(2))) is

4sqrt(6)-8sqrt(16)+3sqrt(6)+12sqrt(10)

If (6)/(2sqrt(3)-sqrt(5))=(12sqrt(3)+6sqrt(5))/(k), then k=

(3sqrt(2))/(sqrt(6)-sqrt(3))+(2sqrt(3))/(sqrt(6)+2)-(4sqrt(3))/(sqrt(6)-sqrt(2))

(2sqrt(6))/(sqrt(2)+sqrt(3))+(6sqrt(2))/(sqrt(6)+sqrt(3))-(8sqrt(3))/(sqrt(6)+sqrt(2))

(6implify:)/(2sqrt(3)-sqrt(6))+(sqrt(6))/(sqrt(3)+sqrt(2))-(4sqrt(3))/(sqrt(6)-sqrt(2))

(3sqrt(2))/(sqrt(3)+sqrt(6))-(4sqrt(3))/(sqrt(6)+sqrt(2))+(sqrt(6))/(sqrt(3)+sqrt(2))