Home
Class 12
MATHS
If C is the mid point of AB and P is any...

If C is the mid point of AB and P is any point outside AB then (A) `vec(PA)+vec(PB)+vec(PC)=0` (B) `vec(PA)+vec(PB)+2vec(PC)=vec0` (C) `vec(PA)+vec(PB)=vec(PC)` (D) `vec(PA)+vec(PB)=2vec(PC)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If C is the middle point of AB and P is any point outside AB,then vec PA+vec PB=...

[vec(a)vec(b)vec(c )]=[vec(b)vec(c )vec(a)]=[vec(c )vec(a)vec(b)] .

Prove that vec(a)xx(vec(b)+vec(c))+vec(b)xx(vec(c)+vec(a))+vec(c)xx(vec(a)+vec(b))=0

If vec( A) + vec(B) =vec( C ) , and | vec(A)| =2 | vec( B) | and vec( B). vec( C ) = 0 , then

Prove that: [vec(a)" "vec(b)" "vec( c )+vec(d)]=[vec(a)" "vec(b)" "vec( c )]+[vec(a)" "vec(b)" "vec(d)] .

Show that the points whose position vectors are vec(a) + 2vec(b) + 5vec(c), 3vec(a) + 2vec(b) + vec(c), 2vec(a) + 2vec(b) + 3vec(c) are colliner.

If P is a point inside Delta ABC such that BC(vec PA)+CA(vec PB)+AB(vec PC)=vec O then P is the .....

OAB is a given triangle such that vec(OA)=vec(a), vec(OB)=vec(b) . Also C is a point on vec(AB) such that vec(AB)=2vec(BC) . What is vec(AC) equal to ?