Home
Class 12
MATHS
For any vector veca the value of (vecaxx...

For any vector `veca` the value of `(vecaxxhati)^2+(vecaxxhatj)^2+(vecaxxhatk)^2` is equal to (A) `4veca^2` (B) `2veca^2` (C) `veca^2` (D) `3veca^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any vector veca |veca xx hati|^(2) + |veca xx hatj|^(2) + |veca xx hatk|^(2) is equal to

|vecaxxhati|^2+|vecaxxhatj|^2+|vecaxxhatk|^2= (A) |veca|^2 (B) 2|veca|^2 (C) 3|veca|^2 (D) 4|veca|^2

(veca.hati)(vecaxxhati)+(veca.hatj)+(veca.hatk)(vecaxxhatk) is equal to

If veca is perpendicular to vecb then the vector vecaxx[vecaxx{vecaxx(vecaxxvecb)}] is equla (A) |veca|^2vecb (B) |veca|vecb (C) |veca|^3vecb (D) |veca|^4vecb

If veca is any vector and hati,hatj and hatk are unit vectors along the x,y and z directions then hatixx(vecaxxhati)+hatjxx(vecaxxhatj)+hatkxx(vecaxxveck)= (A) veca (B) -veca (C) 2veca (D) 0

The vector (veca-vecb)xx(veca+vecb) is equal to (A) 1/2 (vecaxxvecb) (B) vecaxxvecb (C) 2(veca+vecb) (D) 2(vecaxxvecb)

If veca is any then |veca.hati|^2+|veca.hati|^2+|veca.hatk|^2= (A) |veca|^2 (B) |veca| (C) 2|vecalpha| (D) none of these

prove that (veca.hati)(vecaxxhati)+(veca.hatj)(vecaxxhatj)+(veca.hatk)(vecaxxhatk)=vec0

prove that (veca.hati)(vecaxxhati)+(veca.hatj)(vecaxxhatj)+(veca.hatk)(vecaxxhatk)=vec0

If vecb and vecc are any two mutually perpendicular unit vectors and veca is any vector, then (veca.vecb)vecb+(veca.vecc)vecc+(veca.(vecbxxvecc))/(|vecbxxvecc|^2)(vecbxxvecc)= (A) 0 (B) veca (C) veca/2 (D) 2veca