Home
Class 12
MATHS
Let ABCD be a parallelogram such that ve...

Let ABCD be a parallelogram such that `vec(AB)= vec(q), vec(AD) = vec(P) and angleBAD` be an acute angle. If `vec(r)` is the vector that coincides with the altitude directed from the vertex B to the side AD, then `vec(r)` is given by-

Promotional Banner

Similar Questions

Explore conceptually related problems

Let ABCD be a parallelogram such that vec AB=vec q,vec AD=vec p and /_BAD be an acute angle.If vec r is the vector that coincides with the altitude directed from the vertex B to the side AD,then vec r is

Let ABCD be a parallelogram such that vec A B= vec q , vec A D= vec p""a n d""/_B A D be an acute angle. If vec r is the vector that coincides with the altitude directed from the vertex B to the side AD, then vec r is given by (1) vec r=3 vec q-(3( vec pdot vec q))/(( vec pdot vec p)) vec p (2) vec r=- vec q+(( vec pdot vec q)/( vec pdot vec p)) vec p (3) vec r= vec q+(( vec pdot vec q)/( vec pdot vec p)) vec p (4) vec r=-3 vec q+(3( vec pdot vec q))/(( vec pdot vec p)) vec p

ABCD is a parallelogram . If vec(AB)=vec(a), vec(BC)=vec(b) , then what vec(BD) equal to ?

if vec(P) xx vec(R ) = vec(Q) xx vec(R ) , then

If |vec(P) + vec(Q)| = |vec(P) - vec(Q)| , find the angle between vec(P) and vec(Q) .

Given a parallelogram ABCD. If |vec AB|=a,|vec AD|=b&|vec AC|=c, then vec DB*vec AB has the value

The area of the parallelogram constructed on the vectors vec a=vec p+2vec q and vec b=2vec p+vec q as sides vec p,vec q are unit vectors.Find their area

Given two orthogonal vectors vec(A) and vec(B) each of length unity . Let vec(P) be the vector satisfying the equation vec(P) xx vec(B) = vec(A) - vec(P) . Then vec(P) is equal to .