Home
Class 12
MATHS
If the vectors vec(AB)=3hati+4hatk and v...

If the vectors `vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk` are the sides of a triangle ABC, then the length of the median through A is (A) `sqrt(18)` (B) `sqrt(72)` (C) sqrt(33)` (D) `sqrt(45)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the vectors vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk are the sides of a triangle ABC, then the length of the median through A is (A) sqrt(33) (B) sqrt(45) (C) sqrt(18) (D) sqrt(720

The vector vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk are sides of a triangle ABC. The length of the median through A is (A) sqrt(18) (B) sqrt(72) (C) sqrt(33) (D) sqrt(288)

The vectors vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk are the sides of a triangle ABC. The length of the median through A is (A) sqrt(72) (B) sqrt(33) (C) sqrt(2880 (D) sqrt(18)

If the vectors bar A B=3 hat i+4 hat k and bar A C=5 hat i-2 hat j+4 hat k are the sides of a triangle ABC, then the length of the median through A is (1) sqrt(72) (2) sqrt(33) (3) sqrt(45) (4) sqrt(18)