Home
Class 12
MATHS
the two lines x=ay+b,z=cy+d and x=a\'y+b...

the two lines `x=ay+b,z=cy+d and x=a\'y+b,z=c\'y+d\'` will be perpendicular, if and only if: (A) `aa\'+cc\'=1=0` (B) `aa\'+bb\'+cc\'=1=0` (C) `aa\'+bb\'+cc\'=0` (D) `(a+a\')+(b+b\')+(c+c\')=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

The two lines x=ay+b,z=cy+d and x=a'y+b',z=c'y+d' will be perpendicularm if and only if

If the lines x=ay +b, z=cy+d and x=a'y + b', z=c'y + d' are perpendicular, then

The two lines x=ay+b, z=cy+d and x=a'y+b', z=c'y+d' are perpendicular to each other, if

Fid the condition if lines x=ay+b,z=cy+d and x=a'y+b',z=c'y+d are perpendicular.

If lines x=ay+b, z= cy +d " and " x=a' z+b y+c' z+ d' are perpendicular then

Prove that the lines x=ay +b,z =cy +d and x=a'y +b' z =c'y +a' are perpendicular if aa'+cc' +1=0

The condition of rthe ines x=az+b,y=cz+d and x=a_1z+b_1,y=c_1z+d_1 to be perpendicular is (A) ac_1+a_1c+1=0 (B) aa_1+cc_1+1=0 (C) ac_1+bb\'+cc\'=0 (D) (aa_1+cc_1-1=0

If the two lines represented by x+ay=b,z+cy=d and x=a'y+b', z=c'y+d' be perpendicular to each other, then the value of a a'+c c' is :