Home
Class 12
MATHS
" What "f(v)|(n)=int(0)^( pi/4)(tan x)^(...

" What "f(v)|_(n)=int_(0)^( pi/4)(tan x)^(n)dx(1)/(2(pi))sin(pi/ theta),u_(n)+u_(n-2)=(1)/(n-1),(n>1)

Promotional Banner

Similar Questions

Explore conceptually related problems

If u_(n)=int_(0)^((pi)/(4))tan^(n)xdx , show that, u_(n)+u_(n-2)=(1)/(n-1)(ngt1) , hence find u_(5)

int_(0)^((pi)/(2n))(dx)/(1+Cot^(n)nx)=

If I_(n) = int_((pi)/(4))^((pi)/(2)) cot^(n) x dx , prove that I_(n) + I_(n-2) = (1)/(n-1)

If U_(n) = int_0^(pi/4) tan^(n) x dx then u_(n)+u_(n-2) =

I_(n)=int_(0)^(pi//4) tan^(n)x dx , where n in N Statement-1: int_(0)^(pi//4) tan^(4)x dx=(3pi-8)/(12) Statement-2: I_(n)+I_(n-2)=(1)/(n-1)

I_(n)=int_(0)^(pi//4) tan^(n)x dx , where n in N Statement-1: int_(0)^(pi//4) tan^(4)x dx=(3pi-8)/(12) Statement-2: I_(n)+I_(n-2)=(1)/(n-1)

If I_(n)=int_(0)^(pi//4) tan^(n)theta d theta for 1,2,3,… then I_(n-1)+I_(n+1)=

The value of I=int_(0)^(pi//4)(tan^(*n+1)x)dx+(1)/(2)int_(0)^(pi//2)tan^(n-1)((x)/(2))dx is equal to

If I_(n)=int_(0)^(1)x^(n)(tan^(-1)x)dx, then prove that(n+1)I_(n)+(n-1)I_(n-2)=-(1)/(n)+(pi)/(2)

The value of I=int_(0)^((pi)/(4))(tan^(n+1)x)dx+(1)/(2)int_(0)^((pi)/(2))tan^(n-1)((x)/(2))dx is equal to-