Home
Class 12
MATHS
log(sin x)*dx=-(pi)/(2)(y^(2))...

log(sin x)*dx=-(pi)/(2)(y^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that int_(0)^((pi)/(2))log(sin2x)dx=-(pi)/(2)(log2)

Prove that, int_(0)^(pi)log(1+cos x)dx=-pi log2 , given int_(0)^((pi)/(2))log((sin x))dx=(pi)/(2)"log"(1)/(2) .

Statement-1: int_(0)^(pi//2) x cot x dx=(pi)/(2)log2 Statement-2: int_(0)^(pi//2) log sin x dx=-(pi)/(2)log2

Prove that int log sin x dx = - (pi/2)log2

Show that int_(0)^(pi//2) log (sin x) dx = - pi/2 log 2

Prove that: int_(0)^(pi//2) log (sin x) dx =int_(0)^(pi//2) log (cos x) dx =(-pi)/(2) log 2

Prove that: int_(0)^(pi//2) log (sin x) dx =int_(0)^(pi//2) log (cos x) dx =(-pi)/(2) log 2

If= int_(0)^(pi//2) sin x . log (sin x ) dx = log ((K)/(e)). Then, the value of K is ….

If= int_(0)^(pi//2) sin x . log (sin x ) dx = log ((K)/(e)). Then, the value of K is ….