Home
Class 8
MATHS
|[(y+z)^(2),xy,xz],[xy,(x+z)^(2),yz],[xz...

|[(y+z)^(2),xy,xz],[xy,(x+z)^(2),yz],[xz,yz,(x+y)^(2)]|=2xyz(x+y+z)^(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that triangle = |[(y+z)^2,xy,zx],[xy,(x+z)^2,yz],[xz,yz,(x+y)^2]| = 2xyz(x+y+z)^3

Show that: |[(y+z)^2, xy, zx],[xy, (x+z)^2, yz], [xz, yz, (x+y)^2]|=2xyz(x+y+z)^3

Show that Delta=|((y+z)^2,xy,zx),(xy,(x+z)^2,yz),(xz,yz,(x+y)^2)|=2x y z(x+y+z)^3 .

xy,xz,x^(2)+1y^(2)+!,yz,xyyz,z^(2)+1,xz]|=1+x^(2)+y^(2)+z^(2)

Which of the following are possible solutions of |(y^2+z^2,xy,xz),(xy,z^2+x^2,yz),(zx,zy,x^2+y^2)|=8 are (x,y,z)=

Using properties of determinant show that : |(-x^2,xy,xz),(xy,-y^2,yz),(xz,yz,-z^2)|=4x^2y^2z^2

Using properties of determinants,prove that [[-yz,y^(2)+yz,z^(2)+yzx^(2)+xz,-xz,z^(2)+xyx^(2)+xy,y^(2)+xy,-xy]]=(xy+yz+zx)^(2)

Prove that |{:(x^2+1,xy,xz),(xy,y^2+1,yz),(xz,yz,z^2+1):}|=1+x^2+y^2+z^2

Prove that: |[x,x^2,yz],[y,y^2,zx],[z,z^2,xy]|=(x-y)(y-z)(z-x)(xy+yz+zx)

if x=31,y=32 and z=33 then the value of |{:((x^(2)+1)^(2),,(xy+1)^(2),,(xz+1)^(2)),((xy+1)^(2),,(y^(2)+1)^(2),,(yz+1)^(2)),((xz+1)^(2),,(yz+1)^(2),,(z^(2)+1)^(2)):}|" is " "____"