Home
Class 12
MATHS
tan^(-1)n+2cot^(-1)n=(2 pi)/(3)...

tan^(-1)n+2cot^(-1)n=(2 pi)/(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)3+"cot"^(-1)3=(pi)/2

If tan^(-1)x + tan^(-1)y = (2pi)/(3) , then cot^(-1) x + cot^(-1)y is equal to

Solve for x when tan^(-1)2x+tan^(-1)3x=n pi+(3 pi)/(4)

tan^(-1)n+cot^(-1)(n+1)=tan^(-1)(n^(2)+n+1)

Show that tan ^(-1) n+cot ^(-1)(n+1)=tan ^(-1)(n^2+n+1)

tan^(-1)((n)/(n+1))-tan^(-1)(2n+1)=(3 pi)/(4)

For n in N ,if tan^(-1)((1)/(3))+tan^(-1)((1)/(4))+tan^(-1)((1)/(5))+tan^(-1)((1)/(n))=(pi)/(4) ,then (n-2)/(15) is equal to

tan^(-1)((3)/(n))+tan^(-1)((4)/(n))=(pi)/(2)