Home
Class 10
MATHS
" Prove the following identity: (sin "A+...

" Prove the following identity: (sin "A+sec A)^(2)+(cos A+csc A)^(2)=(1+sec A*csc A)^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identities: (sin A+sec A)^(2)+(cos A+csc A)^(2)=(1+sec A csc A)^(2)cot^(2)A((sec A-1)/(1+sin A))+sec^(2)A((sin A-1)/(1+sec A))=0

Prove the following identities : (cot A - cosec A)^(2) = (1 - cos A)/(1 + cos A)

Prove the following identity : (sin theta+ sec theta)^2 +(cos theta+ cosec theta)^2= (1+ sec theta cosec theta)^2 .

Prove the following identities : ((cosec A - cot A)^(2) + 1)/(sec A (cosec A - cot A)) = 2 cot A

Prove the following identity : (1 - tan x)^2+(1 -cot x)^2 = (sec x -cosec x)^2 .

Prove the following identities : (cosec A + sin A) (cosec A - sin A) = cot^(2) A + cos^(2) A

Prove the following identities: (1+tan A tan B)^(2)+(tan A-tan B)^(2)=sec^(2)A sec^(2)B(tan A+csc B)^(2)-(cot B-sec A)^(2)=2tan A cot B(csc A+sec B)

Prove the following identity : (1+ cot A+tan A) (sin A-cos A) =(secA)/(cosec^2 A)- (cosec A)/(sec^2A) .

Prove the following identities : (sec A)/ (sec A + 1) + (sec A)/ (sec A - 1) = 2 cosec^(2) A

Prove the following identities : (cosec A)/ (cosec A - 1) + (cosec A)/ (cosec A + 1) = 2 sec^(2) A