Home
Class 12
MATHS
" (1) "f(x)=(1)/(sqrt(x-|x|))...

" (1) "f(x)=(1)/(sqrt(x-|x|))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain of each of the following functions given by f(x)=(1)/(sqrt(x-|x|)) (ii) f(x)=(1)/(sqrt(x+|x|)) (iii) f(x)=(1)/(sqrt(x-[x]))( iv )f(x)=(1)/(sqrt(x+[x]))

The domain of the function f defined by : f(x)=(1)/(sqrt(x-|x|)) is :

Find the domain of f(x)=(1)/(sqrt(x-|x|))

Find the domain of f(x)=(1)/(sqrt(x-|x|))(b)f(x)=(1)/(log|x])f(x)=log{x}

Find the domain of each of the following functions given by f(x)=1/(sqrt(x-|x|)) (ii) f(x)=1/(sqrt(x+|x|)) (iii) f(x)=1/(sqrt(x-[x])) (iv) f(x)=1/(sqrt(x+[x]))

The domain of f(x)=(1)/(sqrt(x+|x|)) is

The domain of f(x)=(1)/(sqrt(x+|x|)) is

Find the domain of f(x)=1/(sqrt(x-|x|))

Find the domain of f(x)=1/(sqrt(x-|x|))

Find the domain of the following functions. f(x)= (1)/(sqrt(x-|x|))