Home
Class 11
MATHS
" The real "x" and "y" satisfy "log(8)x+...

" The real "x" and "y" satisfy "log_(8)x+log_(4)y^(2)=5" and "log_(8)y+log_(4)x^(2)=7," find "xy

Promotional Banner

Similar Questions

Explore conceptually related problems

The real and y satisfy log_(8)x+log_(4)y^(2)=5 and log_(8)y+log_(4)x^(2)=7, find xy.

if log_(9)x+log_(4)y=(7)/(2) and log_(9)x-log_(8)y=-(3)/(2) then x+y is

If log_(y)x-log_(y^(3))x^(2)= 9 (log_(x)y)^(2) and x = 9y find y.

If log_(9)x +log_(4)y = (7)/(2) and log_(9) x - log_(8)y =- (3)/(2) , then x +y equals

If log_(9)x +log_(4)y = (7)/(2) and log_(9) x - log_(8)y =- (3)/(2) , then x +y equals

If log_(2)x+log_(x)2=(10)/(3)=log_(2)y+log_(y)2 and x!=y find x+y

log_(2)(log_(2)(log_(3)x))=log_(2)(log_(2)(log_(2)y))=0 find (x+y)=?

If log_(a)5=x and log_(a)7=y , then log_(a)sqrt(1,4)=