Home
Class 11
MATHS
The domain of f(x)=loge (4[x]-x) ;(wher...

The domain of `f(x)=log_e (4[x]-x)` ;(where [] denotes greatest integer function) is

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of f(x)=sqrt([x]^(2)-7[x]+12) (where [.] denotes greatest integer function) is

The domain of function f(x)=sqrt(log_([x])|x|) (where denotes greatest integer function),is

Domain of f(x)=log(x^2+5x+6)/([x]-1) where [.] denotes greatest integer function:

The domain of f(x)=log_([x])[x]+log_({x}){x} (where I.] denotes greatest integer function and ( denotes fractional function) is

Domain of f(x)=sqrt([x]-1+x^(2)); where [.] denotes the greatest integer function,is

f(x)=log(x-[x]), which [,] denotes the greatest integer function.

If domain of f(x) is [-1,2] then domain of f(x]-x^(2)+4) where [.] denotes the greatest integer function is

If domain of y=f(x) is [-4,3], then domain of g(x)=f(|x]|) is,where [.] denotes greatest integer function

find the domain of f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

The function, f(x)=[|x|]-|[x]| where [] denotes greatest integer function: