Home
Class 12
MATHS
" 4.Prove that "int(0)^(2a)f(x)dx=int(0)...

" 4.Prove that "int_(0)^(2a)f(x)dx=int_(0)^(a)[f(x)+f(2a-x)]dx

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_(0)^(2a)f(x)dx=int_(0)^(a)[f(a-x)+f(a+x)]dx

Prove that int_(0)^(2a)f(x)dx=int_(0)^(a)[f(a-x)+f(a+x)]dx

Prove that int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx

Prove that int_(0)^(2a)f(x)dx=int_(a)^(a)[f(a-x)+f(a+x)]dx

int_(0)^(2a)f(x)dx-int_(0)^(a)f(x)dx=

int_(0)^(2a)f(x)dx-int_(0)^(a)f(x)dx=

Prove that: int_(0)^(2a)f(x)dx=int_(0)^(2a)f(2a-x)dx

Prove that int_(0)^(a)f(x)g(a-x)dx=int_(0)^(a)g(x)f(a-x)dx .

int_(0)^(a)f(x)dx=int_(a)^(0)f(a-x)dx .

If f(x) is a continuous function defined on [0,\ 2a]dot\ Then prove that int_0^(2a)f(x)dx=int_0^a{f(x)+(2a-x)}dx