Home
Class 11
MATHS
Let f(x) = ax^2 + bx + c where a, b and...

Let `f(x) = ax^2 + bx + c` where `a, b and c` are real constants. If `f(x + y) = f(x) +f(y)` for all real x and y ,then

Promotional Banner

Similar Questions

Explore conceptually related problems

The f(x) is such that f(x+y) = f(x) + f(y) , for all reals x and y xx then f(0) =

The function f(x) =x^(2)+bx +c , where b and c are real constants , decribes -

Let f(x)=a+b|x|+c|x|^(2) , where a,b,c are real constants. The, f'(0) exists if

Let f(x)=a+b|x|+c|x|^(2) , where a,b,c are real constants. The, f'(0) exists if

The function f(x)=x^(2)+bx+c , where b and c are real constants, describes

If f(x+y)=f(x)+f(y) for all real x and y, show that f(x)=xf(1) .

The function f(x)=x^2+bx+c , where b and c real constants , describes

The function f(x)=x^(2)+bx+c , where b and c real constants, describes

If f(x+y)=f(x)f(y) for all real x and y, f(6)=3 and f'(0)=10 , then f'(6) is