Home
Class 11
MATHS
For all real values of x, the minimum...

For all real values of x, the minimum value of `(1-x+x^2)/(1+x+x^2)` is (A) 0 (B) 1 (C) 3 (D) `1/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

For all real values of x, the maximum value of (1-x+x^(2))/(1+x+x^(2)) is :

For all real values of x, the minimum value of (1-x+x^(2))/(1+x+x^(2)) is (A) 0 (B) 1 (B) 3 (D) (1)/(3)

For all real values of x, the minimum value of f(x)=(1-x+x^(2))/(1+x+x^(2)), AA x in R is ……….

For all real value of x , the maximum value of the expression x/(x^2-5x+9) is 1 (b) 45 (c) 90 (d) None of these

For all real value of x, the maximum value of the expression (x)/(x^(2)-5x+9) is 1( b) 45(c)90 (d) None of these

Minimum value of f(x)=2x^(2)-4x+5 is 1 (b) -1(c)11 (d) 3

The minimum value of e^(2x^2-2x+1)sin^2x is e (b) 1/e (c) 1 (d) 0

The minimum value of e^((2x^2-2x+1)sin^(2)x) is a. e (b) 1/e (c) 1 (d) 0