Home
Class 12
MATHS
If z^2-z+ 1 = 0 , then the value of 1/...

If `z^2-z+ 1 = 0` , then the value of `1/12[(z+1/z)^2+(z^2+1/z^2)^2+(z^3+1/z^3)^2+.........(x^24+1/z^24)^2]` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

if z^2+z+1=0 , then the value of (z+1/z)^2+(z^2+1/z^2)^2+(z^3+1/z^3)^2+......+(z^21+1/z^21)^2 is

If z^(2)+z+1=0 then the value of (z+1/z)^(2)+(z^(2)+1/z^(2))^(2)+(z^(3)+1/z^(3))^(2)+....+(z^(21)+1/z^(21))^(2) is equal to

If z^(2)+z+1=0 then the value of (z+1/z)^(2)+(z^(2)+1/z^(2))^(2)+(z^(3)+1/z^(3))^(2)+....+(z^(21)+1/z^(21))^(2) is equal to

If z^(2) + z + 1 = 0 where z is a complex num ber, then (z+(1)/(z))^(2)+(z^(2)+(1)/(z^(2)))^(2)+(z^(3)+(1)/(z^(3)))^(2) equal

If z_(1) + z_(2) + z_(3) = 0 and |z_(1)| = |z_(2)| = |z_(3)| = 1 , then value of z_(1)^(2) + z_(2)^(2) + z_(3)^(2) equals

If |z_(1)|=1,|z_(2)|=2, then value of |z_(1)+z_(2)|^(2)+|z_(1)-z^(2)|^(2) is equal to

If |z_1|=1, |z_2| = 2, |z_3|=3 and |9z_1 z_2 + 4z_1 z_3+ z_2 z_3|=12 , then the value of |z_1 + z_2+ z_3| is equal to

If |z_1|=|z_2|=|z_3|=1 then value of |z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2 cannot exceed