Home
Class 11
MATHS
Prove that (1^2)/3""^n C1+(1^2+2^2)/5^n ...

Prove that `(1^2)/3""^n C_1+(1^2+2^2)/5^n C_2(1^1+2^2+3^2)/7^n C_3+` `+(1^2+2^2++n^2)/(2n+1)^n C_n=(n(n+3))/62^(n-2)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (1^2)/3""^n C_1+(1^2+2^2)/5^n C_2 + (1^1+2^2+3^2)/7^n C_3+ +(1^2+2^2++n^2)/(2n+1)^n C_n=(n(n+3))/6 *2^(n-2)dot

Prove that (1^2)/3""^n C_1+(1^2+2^2)/5""^n C_2+(1^1+2^2+3^2)/7""^n C_3+... +(1^2+2^2++n^2)/(2n+1)""^n C_n = ((n(n+3))/6)*2^(n-2)dot

Prove that (1^(2))/(3).^(n)C_(1)+(1^(2) + 2^(2))/(7).^(n)C_(2)+(1^(2)+2^(2)+3^(2))/(7).^(n)C_(3)+"...." +(1^(2)+2^(3)+"....."+n^(2))/(2n+1).^(n)C_(n) = (n(n+3))/(6)2^(n-2) .

Prove that 1/(n+1)=(.^n C_1)/2-(2(.^n C_2))/3+(3(.^n C_3))/4- . . . +(-1^(n+1))(n*(.^n C_n))/(n+1) .

Prove that 1/(n+1)=(.^n C_1)/2-(2(.^n C_2))/3+(3(.^n C_3))/4- . . . +(-1^(n+1))(n*(.^n C_n))/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n)," prove that " 1^(2)*C_(1) + 2^(2) *C_(2) + 3^(2) *C_(3) + …+ n^(2) *C_(n) = n(n+1)* 2^(n-2) .

Prove that (.^(2n)C_0)^2-(.^(2n)C_1)^2+(.^(2n)C_2)^2-..+(.^(2n)C_(2n))^2 = (-1)^n.^(2n)C_n .

Prove that C_(0)-(1)/(3)*C_(1)+(1)/(5)*C_(2) - …+(-1)^(n)*(1)/(2n+1)C_(n) =(2^(2n)(n !)^(2))/((2n+1)!)