Home
Class 11
MATHS
If b1, b2 bn are the nth roots of unity,...

If `b_1, b_2 b_n` are the nth roots of unity, then prove that `^n C_1dotb_1+^n C_2dotb_2++^n C_ndotb_n-b/b{(1+b_2)^n-1}^dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If b_1, b_2 b_n are the nth roots of unity, then prove that ^n C_1dotb_1+^n C_2dotb_2++^n C_ndotb_n-b_1/b_2{(1+b_2)^n-1}^dot

If b_1, b_2 b_n are the nth roots of unity, then prove that ^n C_1dotb_1+^n C_2dotb_2++^n C_ndotb_n=b_1/b_2{(1+b_2)^n-1}^dot

If b_(1),b_(2)...b_(n) are the nth roots of unity,then prove that ^nC_(1)*b_(1)+^(n)C_(2)*b_(2)+...+^(n)C_(n)*b_(n)-(b)/(b){(1+b_(2))^(n)-1}

If a > b and n is a positive integer, then prove that a^n-b^n > n(a b)^((n-1)//2)(a-b)dot

If a > b and n is a positive integer, then prove that a^n-b^n > n(a b)^((n-1)//2)(a-b)dot

If omega be a nth root of unity, then 1+omega+omega^2+…..+omega^(n-1) is (a)0(B) 1 (C) -1 (D) 2

If omega be a nth root of unity, then 1+omega+omega^2+…..+omega^(n-1) is (a)0(B) 1 (C) -1 (D) 2

If a>b and n is a positive integer,then prove that a^(n)-b^(n)>n(ab)^((n-1)/2)(a-b)

If a ,b ,a n dc are in G.P. then prove that 1/(a^2-b^2)+1/(b^2)=1/(b^2-c^2)dot

If omega is a complex nth root of unity, then sum_(r=1)^n(a+b)omega^(r-1) is equal to (n(n+1)a)/2 b. (n b)/(1+n) c. (n a)/(omega-1) d. none of these