Home
Class 11
MATHS
The largest real value of x such that su...

The largest real value of `x` such that `sum_(k=0)^4((3^(4-k))/((4-k)!))((x^k)/(k !))=(32)/3` is.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the largest real value of x such that sum_(k=0)^4((3^(4-k))/((4-k)!))((x^k)/(k !))=(32)/3 .

Find the largest real value of x such that sum_(k=0)^4((3^(4-k))/((4-k)!))((x^k)/(k !))=(32)/3 .

The largest real value for x such that sum_(k=0)^(4)((5^(4-k))/((4-k)!))((x^(k))/(k!))=(8)/(3)is

Value of sum_(k=1)^(oo)sum_(r=0)^(k)(1)/(3^(k))(^(k)C_(r)) is (2)/(3)b*(4)/(3)c.2d1

Value of k' so that f(k)=int_(0)^(4)|4x-x^(2)-k|dx is minimum is-

Find the value of k, if (3x-4)/((x-3)(x+k))=(1)/(x-3)+(2)/(x+k)

If (2x+3)/((x-3)(x+k))=9/(4(x-3))-1/(4(x+k)) " then "k=

lim_ (x rarr0) ((x + k) ^ (4) -x ^ (4)) / (k (k + 2x))