Home
Class 12
MATHS
We have a sequence a1, a2, ....oo where ...

We have a sequence `a_1, a_2, ....oo` where `a_1 = 4444, a_2 = - 1234` and `a_(k + 2) = a_(k+1)-a_k, k gt= 1.` The sum of first 404 terms is

Promotional Banner

Similar Questions

Explore conceptually related problems

A sequence of integers a_1+a_2+......+a_n satisfies a_(n+2)=a_(n+1)-a_n for ngeq1 . Suppose the sum of first 999 terms is 1003 and the sum of the first 1003 terms is -99. Find the sum of the first 2002 terms.

A sequence of integers a_1+a_2+......+a_n satisfies a_(n+2)=a_(n+1)-a_n for ngeq1 . Suppose the sum of first 999 terms is 1003 and the sum of the first 1003 terms is -99. Find the sum of the first 2002 terms.

A sequence of integers a_1+a_2+......+a_n satisfies a_(n+2)=a_(n+1)-a_n for ngeq1 . Suppose the sum of first 999 terms is 1003 and the sum of the first 1003 terms is -99. Find the sum of the first 2002 terms.

A sequence of no. a_1,a_2,a_3 ..... satisfies the relation a_n=a_(n-1)+a_(n-2) for nge2 . Find a_4 if a_1=a_2=1 .

Find the first five terms of the following sequence a_1 = a_2 = 1 , a_n = a_(n-1) + a_(n - 2) , n ge 3

A sequence of integers a_1+a_2++a_n satisfies a_(n+2)=a_(n+1)-a_nforngeq1 . Suppose the sum of first 999 terms is 1003 and the sum of the first 1003 terms is -99. Find the sum of the first 2002 terms.

A sequence of integers a_1+a_2++a_n satisfies a_(n+2)=a_(n+1)-a_nforngeq1 . Suppose the sum of first 999 terms is 1003 and the sum of the first 1003 terms is -99. Find the sum of the first 2002 terms.

Use the principle of mathematical induction : A sequence a_1, a_2, a_3,…… is defined by letting a_1 = 3 and a_k = 7a_(k-1) , for all natural numbers k > 2 . Show that a_n = 3.7^(n-1) , for all natural numbers .

A sequence a_1,a_2,a_3, ... is defined by letting a_1=3 a n d a_k=7a_(k-1) for natural numbers k ,kgeq2. Show that a_n=3.7_n-1 for all n in N .