Home
Class 12
MATHS
lim(x rarr 0) ((1+x)[x])/{x} is (where [...

`lim_(x rarr 0) ((1+x)[x])/{x}` is (where `[x]` is greatest integer function and `{x}` is fractional function)

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0^(-))([x])/(x) (where [.] denotes greatest integer function) is

lim_(x rarr0)[1+[x]]^((2)/(x)), where [:] is greatest integer function,is equal to

lim_(x rarr0)(x[x])/(sin|x|) , where [.] denote greater integer function

lim_(x rarr1^(-1))([x])^(1-x) where [.] denotes greatest integer function

lim_(xrarr1([x]+[x]) , (where [.] denotes the greatest integer function )

lim_(x rarr1)(1-x+[x-1]+[1-x])= where [.] denotes the greatest integer function

lim_(x->0) [1+[x]]^(2/x), where [:] is greatest integer function, is equal to