Home
Class 12
MATHS
If g(x)=int0^xcos^4tdt , then g(x+pi) ...

If `g(x)=int_0^xcos^4tdt ,` then `g(x+pi)` equals (a)`g(x)+g(pi)` (b) `g(x)-g(pi)` (c)`g(x)g(pi)` (d) `(g(x))/(g(pi))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If g(x)= int_0^x cos^4t dt , then g(x + pi) equals

If g(x) = int_0^x cos^4 t dt , then g(x + pi) equals:

If g(x)=int_(0)^(x)cos4tdt , then g(x+pi) equals-

If g(x)=int_(0)^(x)cos^(4)t dt, then g(x+pi) equals

If g(x)=int_(0)^(x)cos^(4) dt , then g(x+pi) equals

If g(x) = int_0^x cos 4t dt, then g(x + pi) equals :

If g(x) = int_(0)^(x) cos dt , then g(x+pi) equals

If g(x)=int_(0)^(x)cos^(4)t dt, then g(x+pi) equals to (a) (g(x))/(g(pi)) (b) g(x)+g(pi) (c) g(x)-g(pi) (d) g(x).g(pi)

If g(x)=int_(0)^(x)cos^(4)t dt, then g(x+pi) equals to (a) (g(x))/(g(pi)) (b) g(x)+g(pi) (c) g(x)-g(pi) (d) g(x).g(pi)