Home
Class 12
MATHS
lim(x rarr 1) sec^(-1)(lambda^2/lnx-lamb...

`lim_(x rarr 1) sec^(-1)(lambda^2/lnx-lambda^2/(x-1))` exists then `lambda` belong to

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(x rarr1)cos ec^(-1)((k^(2))/(ln x)-(k^(2))/(x-1)) exists, then k belongs to the interval exists,

lim_(x rarr 1) ln(1-lnx)/(lnx^2)=

Number of integral values of lambda for which (lim)_(x to 1)sec^(-1)((lambda^2)/((log)_e x)-(lambda^2)/(x-1)) does not exist is a. 1 b. 2 c. 3 d. 4

Number of integral values of lambda for which (lim)_(xvec1)sec^(-1)((lambda^2)/((log)_e x)-(lambda^2)/(x-1)) does not exist is a. 1 b. 2 c. 3 d. 4

lim_(x rarr oo)((x+lambda)/(x-lambda))^(x)=4 then lambda

lim_(x rarr5)(x^(lambda)-5^(lambda))/(x-5)

Number of integral values of lambda for which limsec ^(-1)((lambda^(2))/(log_(ex))-(lambda^(2))/(x-1)) does not exist is a.1 b.2 c.3 d.4

If ( lambda^(2) + lambda - 2)x^(2)+(lambda+2)x lt 1 for all x in R , then lambda belongs to the interval :

If ( lambda^(2) + lambda - 2)x^(2)+(lambda+2)x lt 1 for all x in R , then lambda belongs to the interval :