Home
Class 12
MATHS
Let f(x)=cos(x/2)*cos(x/4)*...*cos(x/2^n...

Let `f(x)=cos(x/2)*cos(x/4)*...*cos(x/2^n).` If `lim_(n rarr oo) f(x) = g(x)` and `lim_(x rarr 0) g(x) = k` then value of `lim_(y rarr k) [(1-y^2011)/(1-y)].`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)x cos(1/x)

lim_(x rarr0)[cos x]is

lim_(x rarr0)(cos x)/(x+1)

lim_(x rarr0)(1-cos x)/(x)

lim_(x rarr0)(cos x-1)/(x)

lim_(x rarr0)(cos x)/(x+2)

lim_(x rarr0)(cos x)/(x+2)

Given lim_(x rarr0)(f(x))/(x^(2))=2 then lim_(x rarr0)[f(x)]=

lim_(x rarr0)x^(3)cos(2/x)=

lim_(x rarr0)x^(3)cos(2/x)=