Home
Class 12
MATHS
If the tangent at the point (asec alpha,...

If the tangent at the point `(asec alpha, b tanalpha )` to the hyberbola `(x^(2))/(a^(2)) -(y^(2))/(b^(2)) =1` meets the transverse axis at T. Then the distances of T form a focus of the hyperbola is

Promotional Banner

Similar Questions

Explore conceptually related problems

If the tangents at the point (a sec alpha, b tan alpha) to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 meets the transverse axis at T , then the distance of T from a focus of the hyperbola, is

If the normal at P(a sec theta,b tan theta) to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 meets the transverse axis in G then minimum length of PG is

If the normal at theta on the hyperbola x^(2)//a^(2)-y^(2)//b^(2)=1 meets the transverse axis at G, then AG. A'G=

If the normal at 'theta' on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 meets the transverse axis at G , and A and A' are the vertices of the hyperbola , then AC.A'G=

If the normal at theta on the hyperbola x^(2)//a^(2) -y^(2) //b^(2) =1 meets the transverse axis at G , then AG . A'G =

If the normal at P(asectheta,btantheta) to the hyperbola x^2/a^2-y^2/b^2=1 meets the transverse axis in G then minimum length of PG is

If the normal at P(asectheta,btantheta) to the hyperbola x^2/a^2-y^2/b^2=1 meets the transverse axis in G then minimum length of PG is

The tangent at P on the hyperbola (x^(2))/(a^(2)) -(y^(2))/(b^(2))=1 meets one of the asymptote in Q. Then the locus of the mid-point of PQ is

The tangent at P on the hyperbola (x^(2))/(a^(2)) -(y^(2))/(b^(2))=1 meets one of the asymptote in Q. Then the locus of the mid-point of PQ is