Home
Class 12
MATHS
The value of lim(x to 0) ("sin" alpha X...

The value of `lim_(x to 0) ("sin" alpha X - "sin" beta x)/(e^(alphax) - e^(beta x))` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr0)(sin alpha x+sin beta x)/(e^(alpha x)-e^(beta x)) equals

The value of lim_(x rarr0)(sin alpha x-sin beta x)/(e^(alpha x)-e^(beta x))

Evaluate the limits lim_(x to 0) (sin ax)/(sin beta x)

lim_(x rarr00)(sin alpha x)/(sin beta x)=(alpha)/(beta)

alpha beta x ^(alpha-1) e^(-beta x ^(alpha))

lim_(x rarr0)(sin alpha x)/(tan beta x)

lim_(alpha to beta)[(sin^(2)alpha-sin^(2)beta)/(alpha^(2)-beta^(2))] is equal to

Let alpha, beta in R " be such that " lim_( x to 0) (x^(2)sin (beta x))/(ax - sin x) = 1."Then,"6(alpha+beta)"equals"

The value of lim_(x to 0) ((e^x-1)log(1+x))/sin^2x is equal to