Home
Class 12
MATHS
If alpha, beta, gamma are roots of x^3 -...

If `alpha, beta, gamma` are roots of `x^3 - 5x^2 + x - 2 = 0,` then value of `((alpha+2)/(alpha-2))((beta+2)/(beta-2))((gamma+2)/(gamma-2))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are roots of x^(3) - px^(2) + qx - r = 0 then sum alpha^(2) (beta + gamma) =

If alpha, beta, gamma are roots of x^(3) - 2x^(2) + 3x - 4 = 0 , then the value of alpha^(2) beta^(2) + beta^(2) gamma^(2) + gamma^(2) alpha^(2) is

if alpha,beta,gamma are roots of 2x^(3)+x^(2)-7=0 then find the value of sum_(alpha,beta,gamma)((alpha)/(beta)+(beta)/(gamma))

If alpha,beta and gamma are roots of x^(3) -2x+1=0,then the value of Sigma((1)/(alpha+beta-gamma)) is

If alpha, beta ,gamma are the roots of 2x^(3) - 5x^(2) + 3x - 1 = 0 then (1)/(alpha beta ) + (1)/(beta gamma) + (1)/(gamma alpha) =

If alpha,beta,gamma are the roots of the equation x^(3)+2x^(2)+3x+3=0, then the value of ((alpha)/(alpha+1))^(3)+((beta)/(beta+1))^(3)+((gamma)/(gamma+1))^(3) is

If alpha,beta, gamma are the roots of 4x^(3) - 6x^(2) + 7x + 3 = 0 then alpha beta + alpha beta + alpha gamma =

If alpha, beta, gamma are the roots of x^(3) + x^(2) + x + 1 = 0 then (alpha - beta)^(2) + (beta - gamma)^(2) + (gamma - alpha)^(2) =