Home
Class 12
MATHS
Let λ=ax(b+c), μ=bx(c+a). V=-×(a+b) then...

Let λ=ax(b+c), μ=bx(c+a). V=-×(a+b) then 1) λ+μ = V 3) 2+24) None 35 2) λ, μ,V are coplana 4

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of scalar λ if the vectors vec a =2 hat i +hat j +hat k, vec b= hat i -hat j+2hat k and vec c =λ hat i +3 hat j -2 hat k are coplanar.

Find λ such that the vectors vec a =hat i +3 hat j +hat k, vec b= 2 hat i -hat j - hat k and vec c= λ hat i +7 hat j +3 hat k are coplanar.

If maximum and minimum values of (7 + 6 tan θ − tan 2 θ)/ (1 + tan 2 θ) for all real values of θ ≠ ( 2 n + 1 ) π 2 are ] , [ λ and μ respectively then

Find λ such that the vectors vec v_1 =2 hat i - hat j +hat k, vec v_2= hat i +2hat j -3 hat k and vec v_3= 3 hat i +λ hat j +5 hat k are coplanar.

Find λ if the vectors vec a = hat i+3 hat j +hat k, vec b=2 hat i- hat j- hat k and vec c=λ hat j+3 hat k are coplanar.

Find λ if vectors vec a = hat i +λ hat j +hat k, vec b= 2hat i -hat j-hat k and vec c =7 hat j +3hat k are coplanar.

If for any two vectors vec a and vec b , (vec a+ vec b)^2 +(vec a - vecb)^2 =λ {(vec a)^2 +(vec b)^2}, then write the value of λ .

If line y - x - 1 +λ= 0 is equally inclined to axes and equidistant from the points (1, - 2) and (3, 4) , then lambda is

Let f(x)=ax^2-bx+c^2, b != 0 and f(x) != 0 for all x ∈ R . Then (a) a+c^2 2b (c) a-3b+c^2 < 0 (d) none of these

Let f(x)=ax^2-bx+c^2, b != 0 and f(x) != 0 for all x ∈ R . Then (a) a+c^2 2b (c) a-3b+c^2 < 0 (d) none of these