Home
Class 12
MATHS
If bar a,bar b,bar c are non-coplanar v...

If `bar a,bar b,bar c` are non-coplanar vectors such that then `bar b xx bar c=bar a,bar c xx bar a=bar b and bar a xxbar b=bar c`,then `|bar a+bar b+bar c|=`

Promotional Banner

Similar Questions

Explore conceptually related problems

bar a, bar b, bar c are three vectros, then prove that: (bar a xx bar b) xx bar c = (bar a. bar c) bar b-(bar b. bar c) bar a.

If bar(a),bar(b),bar( c ) and bar(d) are coplanar vectors then (bar(a)xx bar(b))xx(bar( c )xx bar(d)) = …………..

If bar(a)xxbar(b)=bar(c) and bar(b)xxbar(c)=bar(a), then

If bar r=l(bar b xx bar c)+m(bar c xx bar a)+n(bar a xx bar b) and [bar a bar b bar c]=2 , then l+m+n is equal to

If bar(a)bar(b)bar(c ) and bar(d) are vectors such that bar(a) xx bar(b) = bar(c ) xx bar(d) and bar(a) xx bar(c ) = bar(b)xxbar(d) . Then show that the vectors bar(a) - bar(d) and bar(b) -bar(c ) are parallel.

If bar(a),bar(b),bar(c) are three non zero vectors,then bar(a).bar(b)=bar(a).bar(c)rArr

i) If bar(a), bar(b), bar(c) are non coplanar vectors, then prove that the vectors 5bar(a)-6bar(b)+7bar(c), 7bar(a)-8bar(b)+9bar(c) and bar(a)-3bar(b)+5bar(c) are coplanar.

If bar(a),bar(b),bar(c) are non - coplanar vectors, then show the vectors -bar(a)+3bar(b)-5bar(c),-bar(a)+bar(b)+bar(c) and 2bar(a)-3bar(b)+bar(c) are coplanar.

bar(a) , bar(b) and bar(c) are three vectors such that bar(a) + bar(b) + bar(c) = bar(0) and |bar(a)| =2, |bar(b)| =3, |bar(c)| =5 ,then bar(a) . bar(b) + bar(b) . bar(c) + bar(c) . bar(a) equals

If bar(a),bar( c ) and bar(d) are not coplanar vectors and bar(d).(bar(a)xx(bar(b)xx(bar( c )xx bar(d))))=K[bar(a),bar( c ),bar(d)] then K = ….