Home
Class 9
MATHS
The expression x^4+4 can be factorized ...

The expression `x^4+4` can be factorized as (a) `(x^2+2x+2)(x^2-2x+2)` (b)`(x^2+2x+2)(x^2+2x-2)` (c)`(x^2-2x-2)(x^2-2x+2)` (d) `(x^2+2)(x^2-2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

2x^2(x^3-x)-3x(x^4+2x)-2(x^2-3x^4)

(x+y)^3−(x−y)^3 can be factorized as (a) 2y(3x^2+y^2) (b) 2x(3x^2+y^2) (c) 2y(3y^2+x^2) (d) 2x(x^2 +3y^2)

The factors of x^4-x^2-10x-25 are (a) (x^2+3x+5)(x^2-3x+5) (b) (x^2+3x+5)(x^2+3x-5) (c) (x^2+x+5)(x^2-x+5) (d) none of these

The factors of x^(4)+x^(2)+25 are (a)(x^(2)+3x+5)(x^(2)-3x+5)(b)(x^(2)+3x+5)(x^(2)+3x-5)(c)(x^(2)+x+5)(x^(2)-x+5) (d) none of these

Simplify: 2x^2(x^3-x)-3x(x^4+2x)-2(x^4-3x^2)

(x+y)^(3)-(x-y)^(3) can be factorized as 2y(3x^(2)+y^(2)) (b) 2x(3x^(2)+y^(2))2y(3y^(2)+x^(2)) (d) 2x(x^(2)+3y^(2))

Factors of x^2-6x+ 8 are (A) (x-4)(x-2) (B) (x+4) (x+2) (C ) (x+8) (x-2) (D) (x-4) (x+2)

d/(dx)[log{e^x((x-2)/(x+2))^(3//4)}] equals (a) (x^2-1)/(x^2-4) (b) 1 (c) (x^2+1)/(x^2-4) (d) e^x(x^2-1)/(x^2-4)