Home
Class 12
MATHS
If the volume of the parallelopiped form...

If the volume of the parallelopiped formed by the vectors `veca, vecb, vecc` as three coterminous edges is 27 units, then the volume of the parallelopiped having `vec(alpha)=veca+2vecb-vecc, vec(beta)=veca-vecb`
and `vec(gamma)=veca-vecb-vecc` as three coterminous edges, is

Promotional Banner

Similar Questions

Explore conceptually related problems

If the volume of the parallelopiped with veca,vecb and vecc as coterminous edges is 40 cubic units, then the volume of he parallelopiped having vecb+vecc,vecc+veca and veca+vecb as coterminous edges in cubic units is

Volume of the parallelopiped whose adjacent edges are vectors veca , vecb , vecc is

The volume of a parallelopiped whose coterminous edges are 2veca , 2vecb , 2 vec c , is

If V is the volume of the parallelopiped having three coterminous edges as veca,vecb and vecc , then the volume of the parallelopiped having three coterminous edges as vec(alpha)=(veca.veca)veca+(veca.vecb)vecb+(veca.vecc)vecc vec(beta)=(veca.vecb)veca+(vecb.vecb)vecb+(vecb.vecc)vecc vec(gamma)=(veca.vecc)veca+(vecb.vecc)vecb+(vecc.vecc)vecc is

The volume of a tetrahedron fomed by the coterminus edges veca , vecb and vecc is 3 . Then the volume of the parallelepiped formed by the coterminus edges veca +vecb, vecb+vecc and vecc + veca is

The volume of a tetrahedron fomed by the coterminus edges veca , vecb and vecc is 3 . Then the volume of the parallelepiped formed by the coterminus edges veca +vecb, vecb+vecc and vecc + veca is

The volume of a tetrahedron fomed by the coterminus edges veca , vecb and vecc is 3 . Then the volume of the parallelepiped formed by the coterminus edges veca +vecb, vecb+vecc and vecc + veca is

Statement 1: If V is the volume of a parallelopiped having three coterminous edges as veca, vecb , and vecc , then the volume of the parallelopiped having three coterminous edges as vec(alpha)=(veca.veca)veca+(veca.vecb)vecb+(veca.vecc)vecc vec(beta)=(veca.vecb)veca+(vecb.vecb)vecb+(vecb.vecc)vecc vec(gamma)=(veca.vecc)veca+(vecb.vecc)vecb+(vecc.vecc)vecc is V^(3) Statement 2: For any three vectors veca, vecb, vecc |(veca.veca, veca.vecb, veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc)|=[(veca,vecb, vecc)]^(3)

If |veca|=5, |vecb|=3, |vecc|=4 and veca is perpendicular to vecb and vecc such that angle between vecb and vecc is (5pi)/6 , then the volume of the parallelopiped having veca, vecb and vecc as three coterminous edges is