Home
Class 12
MATHS
If roots of an equation x^n-1=0a r e1,a1...

If roots of an equation `x^n-1=0a r e1,a_1,a_2,..... a_(n-1),` then the value of `(1-a_1)(1-a_2)(1-a_3)(1-a_(n-1))` will be `n` b. `n^2` c. `n^n` d. 0

Promotional Banner

Similar Questions

Explore conceptually related problems

If roots of an equation x^n-1=0 are 1,a_1,a_2,........,a_(n-1) then the value of (1-a_1)(1-a_2)(1-a_3)........(1-a_(n-1)) will be (a) n (b) n^2 (c) n^n (d) 0

If 1, a_1,a_2,a_3 ,…, a_(n-1) are the nth roots of unity then prove that : (1-a_1)(1-a_2)(1-a_3)...(1-a_(n-1)) =n.

If a_i > 0 for i=1,2,…., n and a_1 a_2 … a_(n=1) , then minimum value of (1+a_1) (1+a_2) ….. (1+a_n) is :

If a_i > 0 for i=1,2,…., n and a_1 a_2 … a_(n=1) , then minimum value of (1+a_1) (1+a_2) ….. (1+a_n) is :

If a_1,a_2 ...a_n are nth roots of unity then 1/(1-a_1) +1/(1-a_2)+1/(1-a_3)..+1/(1-a_n) is equal to

"If "a_1,a_2,a_3,.....,a_n" are in AP, prove that "a_(1)+a_(n)=a_(r)+a_(n-r+1)""

If 1, a_1,a_2,a_3 ,…, a_(n-1) are the nth roots of unity then prove that : 1+a_1+a_2+…+a_(n-1) =0.

If a_1, a_2,...... ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....+(a_(n-1))/(a_n)+(a_n)/(a_1)> n

If a_1, a_2,...... ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....+(a_(n-1))/(a_n)+(a_n)/(a_1)> n