Home
Class 12
MATHS
If the cube roots of unity are 1,omega,o...

If the cube roots of unity are `1,omega,omega^2,` then the roots of the equation `(x-1)^3+8=0` are : (a) `-1,1+2w,1+2w^2` (b) `-1,1-2w,1-2w^2` (c) `-1,-1,-1` (d) `1,w,w^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the cube root of unity are 1,omega,omega^(2) , then the roots of the equation (x-1)^(3)+8=0 are :

If the cube roots of unity are 1,omega,omega^(2), then the roots of the equation (x-1)^(3)+8=0, arte

If the cube roots of unity are 1 , omega , omega^(2) , then find the roots of the equation ( x - 1)^(3) + 8 = 0 .

If the cube roots of unity are 1,omega,omega^(2), then the roots of the equation (x-1)^(3)+8=0 are -1,1+2 omega,1+2 omega^(2) b.-1,1-2 omega,1-2 omega^(2) c.-1,-1,-1 d.none of these

If 1,omega,omega^(2) are the cube roots of unity, then the roots of the equation (x-1)^(3)+8=0 are

If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)

if 1,w,w^(2) be imaginary cube root of unity then the root of equation (x-1)^(3)+8=0 are :