Home
Class 12
MATHS
If 1, alpha,alpha^2,.......alpha^(n-1) ...

If `1, alpha,alpha^2,.......alpha^(n-1)` are n, `n^(th)` roots ofunity, then `1 + 2alpha+ 3alpha^2 + 4alpha^3 +......+ n` terms is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If 1,alpha,alpha^2,…...,alpha^(n-1) are the n^(th) roots of unity, then the value of (3-alpha)(3-alpha^2)…...(3-alpha^(n-1)) is

If 1,alpha_1,alpha_2,…..alpha_(n-1) are the n^(th) roots of unity then (1-alpha_1)(1-alpha_2)…..(1-alpha_(n-1))=

If 1, alpha,alpha^2.......alpha^(n-1) are the nth roots of unity then prove that (1-alpha)(1-alpha^2).....(1-alpha^(n-1))=n

If alpha (!=1) is a nth root of unity then S = 1 + 3alpha+ 5alpha^2 + .......... upto n terms is equal to

If alpha (!=1) is a nth root of unity then S = 1 + 3alpha+ 5alpha^2 + .......... upto n terms is equal to

If alpha (!=1) is a nth root of unity then S = 1 + 3alpha+ 5alpha^2 + .......... upto n terms is equal to

If alpha is the nth root of unity then 1+2alpha+3alpha^(2)+ ............to n terms is equal to

If alpha(!=1) is a nth root of unity then S=1+3 alpha+5 alpha^(2)+......... upto n terms is equal to