Home
Class 12
MATHS
If omega!=1 is a cube root ofunity sati...

If `omega!=1` is a cube root ofunity satisfying `1/(a + w) + 1/(b+w)+1/(c + w)= 2w^2 and 1/(a+w^2)+1/(b+w^2)+1/(c+w^2)=2w` then the value of `1/(a+1)+1/(b+1)+1/(c+1)` is (A) `2` (B) `-2` (C) `omega^2` (D) `omega`

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega ne 1 is a cube root of unity satisfying (1)/(a + w) + (1)/(b + w) + (1)/(c +w) = 2 w^(2) and (1)/(a + w^(2)) + (1)/(b + w^(2)) + (1) /(c + w^(2)) = 2w then the value of (1)/(a + 1) + (1)/(b + 1) + (1)/(c + 1) is

If omega ne 1 is a cube root of unity such that : (1)/(a+omega)+(1)/(b+omega)+(1)/(c+omega)=2omega^(2) and (1)/(a+omega^(2))+(1)/(b+omega^(2))+(1)/(c+omega^(2))=2omega , then the value of (1)/(a+1)+(1)/(b+1)+(1)/(c+1) is :

If omega_(1) is complex cube root of that (1)/(a+omega)+(1)/(b+omega)+(1)/(c+omega)=2 omega^(2) and (1)/(a+omega^(2))+(1)/(b+omega^(2))+(1)/(c+omega^(2))=2 omega then the value of (1)/(a+1)+(1)/(b+1)+(1)/(c+1)=

If omega_(1) is complex cube root of that (1)/(a+omega)+(1)/(b+omega)+(1)/(c+omega)=2 omega^(2) and (1)/(a+omega^(2))+(1)/(b+omega^(2))+(1)/(c+omega^(2))=2 omega then the value of (1)/(a+1)+(1)/(b+1)+(1)/(c+1)=

If omega (ne 1) is a cube root of unity and (1 + omega^(2))^(11) = a + b omega + c omega^(2) , then (a, b, c) equals

if omega and omega^(2) are the nonreal cube roots of unity and [1/(a+omega)]+[1/(b+omega)]+[1/(c+omega)]=2 omega^(2) and [1/(a+omega)^(2)]+[1/(b+omega)^(2)]+[1/(c+omega)^(2)]=2 omega then find the value of [1/(a+1)]+[1/(b+1)]+[1/(c+1)]

If omega(!=1) is a cube root of unity,and (1+omega)^(7)=A=B omega. Then (A,B) equals (a) (0,1)(b)(1,1)(c)(2,0)(d)(-1,1)

If 1,w,w^(2) are the cube roots of unity then (1)/(1+w^2)+(2)/(1+w)-(3)/(w^2+w)=